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Abstract—This paper investigates the integration of different
approaches to automatically predict high/low-score on the de-
mentia scale. We propose two different approaches to predict this
value by capturing the following: (1) the participant’s interaction
behavior with a humanoid robot and (2) the indoor daily
activity in the residence using ubiquitous sensors. The interaction
and indoor activity data set were obtained by recording 32
participants living in common residences, including 17 with
symptoms of dementia, as indicated through a cognitive test
(Revised Hasegawa Dementia Scale). To obtain the interaction
features, we extracted the turn-taking features of interaction with
a mobile-typed humanoid robot. To extract the indoor activity
features, we collected the location data of each participant in the
residence using the received signal strength indicators (RSSIs) of
Bluetooth signals from different access points (e.g., shared spaces
or the participant’s room). In the experimental evaluation, we
trained binary classification models for classifying the score on
the dementia scale from these datasets. The results show that the
best classification accuracy (0.875) is achieved when interaction
and activity features are fused using a random forest classifier.

Index Terms—Dementia, Ubiquitous indoor positioning, Hu-
man robot interaction, Machine learning

I. INTRODUCTION

Dementia is a syndrome comprising brain diseases that
gradually decrease in the patient’s ability to think and re-
member to the level of affecting their daily functioning [1].
Dementia is also known to have a strong emotional component
and the detection of indicators of dementia clearly help us
understand the emotional component. In recent years, many
works have focused on the automatic detection of dementia
based on a patient’s verbal communication abilities, such as
speech, language attributes, and interaction with computer
avatars [2], [3], along with features of physical activity such as
walking speed [4]. Many studies have focused on the detection
of dementia through sensing either interaction behaviors or
physical activity. The effectiveness of the integration of both
types of information has been unexplored.

In this research, we conducted a comparative analysis of
automatically predicting scores on the dementia scale using
multiactivity features based on the participant’s interaction be-
haviors, which was observed through human-robot interaction
under a noncontrolled condition setting (interaction dataset),
and their indoor daily activity, which was observed using an

indoor positioning system in the participants’residences (daily
activity dataset). To observe and record their daily activity,
an indoor positioning system was used, and each of the
participants were equipped with a mobile beacon. We collected
the location data of the participants in their residences using
the received signal strength indicators (RSSIs) of Bluetooth
signals from different access points.

The 32 participants and their families agreed to the record-
ing of the dataset. All 32 participants completed a cognitive
test called the Revised Hasegawa’s Dementia Scale (HDS-
R) [5], which has been proposed to screen for dementia.
We extracted the turn-taking features from the interaction
data, including the reaction time after the questions and the
speaking length. The location data were converted into indoor
activity features, capturing how much time each participant
stayed in each room or shared space. For this experiment,
classification models are trained using the obtained dataset
that would allow us to detect the possibility of dementia as a
binary classification task by distinguishing between a higher-
scale group and a lower-scale group. The main contributions
of this study are summarized below.
Multiactivity data set for analyzing the dementia scale: We
collected a novel multiactivity dataset from the participants in
residential facilities over three months to extract interaction
behaviors and indoor daily activities. Long-term data collec-
tion under these realistic conditions enabled us to model the
behaviors of the participants.
Fusing interaction and indoor activity for detecting demen-
tia: This study addresses a novel challenge in investigating
the possibility of automatic prediction of the dementia scale
by integrating location-based activity analysis using ubiquitous
sensing and interaction behavior analysis.
Automatic dementia scale classification: Collecting the in-
teraction and location datasets, extracting the features from
these datasets was conducted in a fully automatic manner.

II. RELATED WORKS

A. Analyzing Dementia using Interaction Features

Orimaye et al. [6] reported the effectiveness of using lin-
guistic features including syntactic features to identify people
with Alzheimer’s disease. Boschi et al. [7] reviewed the
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Fig. 1. Overview of dementia scale score prediction scheme

TABLE I
STATISTICS OF PARTICIPANTS AND THE

NUMBER OF PARTICIPANT’S IN
HIGH/LOW-SCORE GROUP OF DEMENTIA

SCALE

Num. of HDS-R
Participants [High/Low]

Interaction 19 [12/7 ]
Location 19 [7/12]
Both 6 [4/2 ]
Total 32 [15/17]
Gender [F/M] [28/4]
Average age 84.56 (±5.25)

differences in the tasks used to elicit connected speech, picture
description, story narration, and interviews, considering the
possible different contributions to the assessment of different
linguistic domains. Masrani et al. [8] investigated the forms
of blog posts by writers with dementia using natural language
processing.

König et al. [9] proposed an approach to detecting dementia
from vocal features using four cognitive vocal tasks. In ad-
dition, König et al. [10] collected automatic speech analytics
using a mobile application and showed its effectiveness for use
in the assessment task. Fraser et al. [11] proposed an approach
to identifying Alzheimer’s disease through speech recordings
from the DementiaBank dataset by using multimodal features
including linguistic and acoustic features from the transcript.
Aramaki et al. [12] analyzed written and spoken narratives to
compare the language abilities of study participants with and
without mild cognitive impairment (MCI) to explore the rela-
tionship between cognitive and language abilities. Regarding
visual features, some studies have reported mutual gazes [13]
and facial expressions [14], [15] as key descriptors for use in
detecting dementia.

In recent years, agent systems with multimodal or social
signal sensing have been developed for counseling participants
[16], [3]. This research is inspired from the findings of
[3]. We extracted the reaction time (the gap feature) after
a question from a robot and the speaking length, and we
used these features to detect dementia. Furthermore, previous
studies focused on observing the communication behaviors to
detect dementia. Thus, the participants’daily activity was not
considered. Herein, we investigate the relationships between
interaction behavior and dementia and between daily activity
and dementia.

B. Detecting physiological disease from physical activity

Hodges et al. [17] used wearable devices (RFID bracelets)
and RFID- tagged objects to detect indications of cognitive
impairments such as dementia and traumatic brain injury
by monitoring individuals performing a well-defined routine
task—making coffee.

Hayes et al. [4] investigated the association between
walking speed, the amount of daily activity in the partici-
pants’residences and the level (high/low) of MCI by extracting
activity features using a motion sensor system. Dawadi et
al. [18] investigated the association between the ability of
a participant to complete an activity and the health assess-
ment (dementia or cognitively healthy). Riboni et al. [19]
investigated the ability of individuals to perform activities
independently without assistance as an important feature in
estimating their functional health. Robben et al. [20] developed
an ambient sensor monitoring system and collected sensor data
in a participant’s residence over three years. In addition, [21]
proposed an algorithm for quantifying the changes in everyday
behavior and evaluated the algorithm using a longitudinal
sensor dataset.

In many previous studies, datasets were collected using a
smart-home test bed or in a laboratory setting. We focus on
extracting the participants’activity during daily life (ADL),
using only location sensors in the participants’residences. This
means that the data collection process is done in a real-life
environment. The main difference between this study and
previous research is that our dataset includes both data on
the interaction with the robot.

III. METHOD

A. Data recording in the nursing residential facility

Figure 1 shows the overview of the dementia scale score
prediction. We recorded the interaction and indoor daily ac-
tivity datasets in two nursing residential facilities in Japan.
We recruited 32 Japanese participants. The Research Ethics
Committees of “NIPPON TELEGRAPH AND TELEPHONE
WEST CORPORATION” reviewed and approved the collec-
tion of data and the corresponding research using this dataset.
The dataset, excluding personal information (age, gender,
name, and audio) that could be used by a third party to identify
and discriminate against the participants, were shared only to
all coauthors of this study1. The statistics of age and gender
were shared only in that the average age of the participants

1This dataset is not publicly available.



was 84.56 (±5.25) and there were 4 male and 28 female
participants. Written informed consent was obtained from all
participants or from a capable family member before collecting
the following data.

The participants initially completed the dementia screening
test called the Revised Hasegawa’s Dementia Scale (HDSR)
test (Section III-B) in the residential facility. Eleven partic-
ipants out of the 32 were unable to complete the test. An
expert caregiver analyzed the test data for these 11 participants
and examined the participants’cognitive health. Their scores
were estimated as below 20, and their cognitive function was
judged as decreased. In the HDS-R, if the score is below
20 points (cut-off), the possibility of dementia is high. This
study investigates the association between multiple activities
and the score on the HDS-R. Table I shows a summary of the
statistics of the participants in the high/low-score groups of
the dementia scale.

In total, 19 participants agreed to install the mobile robot
into their room and to record the interaction log data, including
the timing of the participants’speaking turns calculated via a
voice-activity detection technique. A total of 1056 sessions of
interaction was recorded over three months. Each session in-
cluded 1-10 turns taken between the robot and the participant,
and the average was 52.8 sessions per participant. A total of
19 participants agreed to always carry a mobile beacon and
to record the RSSI signal sent out from the beacon. Indoor
location activity data were recorded for all participants over
854 days, and average was 44.9 days per participant. In total,
6 participants agreed to record both kinds of data.

B. Revised Hasegawa’s Dementia Scale (HDS-R)

The Revised Hasegawa’s dementia scale (HDS-R) consists
of nine simple questions (including questions to check for
memory and simple mathematical-logical capacity), with a
maximum score of 30. The cutoff point for the age-associated
dementia screening is 20-21. A lower score means high risk
of dementia. The test’s effectiveness in screening for age-
associated dementia was examined [5].

Some questions in HDS-R are common to that in Mini-
Mental Status Examination (MMSE) which is most frequently
used in worldwide. The HDS-R correlation coefficient relative
to the MMSE was as high as 0.94. Kim et al. [22] reported
that the diagnostic accuracy of HDS-R was significantly higher
than that of the MMSE, regardless of the educational level
of the subjects, as a result of their comparison between
the diagnostic accuracies for Alzheimer’s disease. From this
findings, HDS-R is often used for Japanese people and we
used the HDS-R as the dementia scale in this study.

C. Interaction dataset

To collect the interaction data, we used the mobile robot
RoBoHon (SR-01M-W) 2, which was produced by Sharp
Corporation. The robot is a humanoid-type small robot (19.5
cm and 390 g) and has the functions of a mobile smart-
phone. The specs are as follows: OS - Android 5.0 and CPU -

2https://robohon.com/global/index.php

Qualcomm Snapdragon 400 processor at 1.2 GHz. Though
it also has a camera and microphone similar to those of
a smart-phone, the camera was not used in this study, and
audio data was used only for voice activity detection. For this
experiment, a dialog system was developed in the robot using
a software development kit for speech processing and dialog
management. The objective within the dialog system is to play
a quiz game with the participant. The system has two dialog
modes: (1) small-talk including greeting and self-disclosure;
and (2) quiz, including questions in a cognitive test. The dialog
procedure is shown below.
[Step 1]: The system starts to talk to the participant (e.g., The
system says “Hello (the participant’s name)!”). If a voiced
reaction is detected via voice-activity detection (VAD) within
TGs after the system utterance, then the system goes to Step
2. TG is the maximum time for waiting for the utterance.
[Step 2]: The system continues small-talk (e.g., “How are
you? ”, “Talk with me” ) without speech recognition of the
participant’s utterance. The system automatically goes to Step
3 after this step.
[Step 3]: The system starts the quiz (e.g. Q1: “What year is
it?”). If the voiced reaction is recognized within TGs after the
system utterance, then repeat Step 3 with the next question.
Otherwise, go to Step 4.
[Step 4]: The system continues small-talk (e.g., “Hi (the
participant’s name), are you there? ” ). If the voiced reaction
is recognized within TGs after system utterance, the system
goes back to Step 3. Otherwise, the application is terminated
after a greeting from the system.

We set TG to 20 seconds. The robot attempts to talk with
the participant every two hours, and each session may include
up to two quizzes (Step 1-4). A total of twenty quizzes was
prepared for the dialog, and two quizzes were chosen randomly
for each session. If a quiz is used for a session, the same quiz
is not used in the next session in the day. We recorded the
timestamps (start and end time) of the utterances of the system
and the participants via VAD.

D. Indoor location dataset

Although the two nursing residential facilities hosting the
participants are very different, they both have individual rooms
with a bed and a bath room and a shared space for free
communication between the residents. To collect the indoor
location data, we used a Bluetooth low-energy (BLE) beacon,
Biblle 3, which was produced by George and Shaun, Co. Ltd.
This Bluetooth beacon has a small radio transmitter (6 × 0.6 ×
2.2 cm, 9.07 g) that sends out signals within a radius of 10-30
meters (interior spaces). These beacons are cost-effective, can
be installed with minimal effort. We installed the reference
access points (AP), which are receivers for the Bluetooth
signal, in the participants’rooms and the shared spaces of the
residential facilities. We estimate the position of a participant
with a beacon using the RSSI of the Bluetooth signal and the
location coordinates of the APs.

3https://george-shaun.com/



IV. MULTI-ACTIVITY FEATURE EXTRACTION

For extracting the interaction features of i th participant, the
feature set is extracted per session from the total Si sessions
in which the participant talked with the robot. One session is
defined as the time from the beginning of the dialog with the
robot to the end of the dialog. For the indoor activity features,
the feature set is extracted per day out of Di days that the
location data was observed from the participant.

A. Interaction activity with the robot

We extracted the turn-taking features, which are effective for
use in detecting dementia. Only turn-taking in the quiz was
used for feature extraction in this study. If voice activity from
the participant was detected in the quiz, the robot-participant
utterance pair was defined as a turn taken. Webrtc open source
API 4 was used for voice activity detection in this study.
1) When a participant’s (t) th utterance in the (i) th session

Up,t,i is detected via VAD, let the end time of the system
utterance of the quiz be ETr,t,i and the start, and end times
of Up,t,i are STp,t,i and ETp,t,i.

2) The reaction time duration is calculated as RTt,i =
STp,t,i − ETr,t,i.

3) The speaking length within the turn is calculated as
SLt,i = ETp,t,i − STp,t,i.

The turn-taking features are calculated as follows.
Reaction time: First, the statistical parameters including
the mean, standard deviation, maximum, minimum,
median, percentile:75% (p75), percentile:25% (p25)
and difference between percentiles (p75 − p25) of the
reaction time RTt,i is calculated over all utterance.
Second, the statistical parameters including the mean
(Ses.MeanRT ), standard deviation (Ses.StdRT ), and
maximum (Ses.MaxRT ) and minimum (Ses.MinRT ) of
the reaction time RTt,i are calculated over all utterances in
each session (t ∈ T ). The mean and standard deviation of
Ses.MeanRT , Ses.StdRT , Ses.MaxRT , Ses.MinRT are
calculated as well (the mean is M.Ses.∗, and the standard
deviation is S.Ses.∗). The dimension of the space is 16.
Speaking length: The statistical parameters of the speaking
length SLt,i are calculated for all utterance in all sessions
and for each session separately in the same manner using the
RT . The dimension is also 16.
Speaking time (Num. of utterance): The total number of
utterance ST in all sessions is calculated . The mean and
standard deviation of the ST (i) are calculated per session.

B. Indoor daily activity

The indoor location data obtained using the mobile beacons
captured how often the participants stayed in each room daily.
Wang et al. [23] reported that both social interaction and
intellectual stimulation may be relevant to preserving mental
function in the elderly through a longitudinal population-based
study. From this finding, we hypothesize that the condition of
cognitive impairment is associated with the participants’daily

4https://webrtc.org/native-code/development/prerequisite-sw/

activities. It is assumed that participants who stay in the shared
space or in others’rooms often are more socially active. There-
fore, we calculated the time during which each participant
stayed in each room using the location data.

1) When an AP receives a signal from a beacon (ID of the
participant), a data sample is added into the database. The
data is composed of attributes: (1) ID: M of the AP, (2) ID:
P of the beacon, and (3) RSSI: the RSSI of the signal.
Each AP: M has a coordinate of position PosM = (X,Y )
in the residential facility.

2) Every participant lives in one of the two residential fa-
cilities. Therefore, we need to extract common activity
features which are independent of the residential facility.
Common features in both residential facilities are the
shared space and the private rooms for participants. We
classify the positions, Pos, into three types: participant’s
own room (C = 1), the shared space (shared living and
recreation room) (C = 2), and other places including
others’ rooms (C = 3) in the residential facility (an
example is shown in Figure 1).

3) The place where participant P stays for H hours is
estimated using the RSSIs. Let the RSSI vectors of all the
Bluetooth signals detected by AP in place C ∈ {1, 2, 3}
be RSSIH,C = {rssiC,1, . . . , rssiC,NH,C

}, where NH,C

corresponds to the number of times the signals were
received by the APs in place C within H hours. rssi
[dBm] is a negative value (RSSI > −100), and we
normalize the RSSI by wC,n = 100 + rssiC,n.

4) The probability that participant N is staying in place C
for H hours is PrH,C =

∑NH,C

n wC,n/Z , where Z =∑
C

∑
n wC,n.

We calculate Pr24,C as the probability of the participant
staying in a place for one day (24 h). Pr24,C is calculated for
each day for all participants. (ii) in Figure 1 shows an example
of the place estimation procedure from the RSSI vectors of
the APs. The number of recorded days per participant is
distributed from 5-69.
The time s/he stays in place 1-3: The mean and standard
deviation of Pr24,1 (ratio of time in own room), Pr24,2 (ratio
of time in shared space), and Pr24,3 (ratio of time in other
places) are calculated. In addition, we calculate the mean and
standard deviation Pr24,2+Pr24,3 that correspond to the ratio
of time spent in places other than the participant’s room. The
dimension of the activity feature space is 8.

C. Feature analysis correlated to HDSR

We conducted independent-sample t-tests between multiac-
tivity features and the high or low groups of the dementia
scale. In the analysis, the multiactivity features are extracted
from all data samples observed during whole term of data
collection. Table II shows the results of the t-test for the multi-
activity features. We list the features which are significantly
different (p < 0.1) between the high/low-score groups. The
third row shows the p-values, and fourth row denotes the signs
(> or <) of magnitude between the high/low groups.



TABLE II
FEATURES THAT ARE SIGNIFICANTLY DIFFERENT (p < 0.1) BETWEEN THE

HIGH/LOW SCORE GROUPS OF THE DEMENTIA SCALE

Interaction p-value L H
Reaction time Max. 0.059 <
Speaking length Max. 0.034 <

p75 − p25 0.059 <
M.Ses.Min 0.034 <
S.Ses.Mean 0.049 <
S.Ses.Min 0.015 <

Speaking time Mean 0.008 <
M.Ses.Mean 0.054 >

Location p-value L H
std. of (Pr24,3) 0.090 >
mean of (Pr24,2 + Pr24,3) 0.070 <

Concerning the interaction features, the maximum reaction
time (Max.:) is significantly different (p = 0.059), and the
reaction time of the low-score group is shorter than that of
the high-score group. This result, however, is inconsistent
with the previous finding in [3]. According to the present
results, the reaction time (the feature is named as “gap” in
[3]) of dementia group was longer than that of health control
group. Exploring the reason why the result is inconsistent
is a remaining work. More features of the speaking length
are significantly different. These features are the maximum
speaking length ([Max.]: p = 0.034), the percentile difference
([p75 − p25]: p = 0.059), the standard mean of the minimum
speaking length per session ([M.Ses.Min]: p = 0.034), and
the standard deviation of the minimum and mean speaking
length per session ([S.Ses.Min]: p = 0.015, [S.Ses.Mean]
:p = 0.049). The speaking length of the high-score group
tended to be longer than that of the low-score group. Con-
cerning activity features, the standard deviation of the ratios of
time spent in other places ([std. of (Pr24,3)]: p = 0.090) and
the mean ratio of time spent in places except the participant’s
own room ([mean of (Pr24,2 + Pr24,3)]: p = 0.070) are
significantly different. This means that the participants in the
low-score group tended to stay in their own room for a longer
time. Furthermore, this result aligned with the finding that
healthy elderly people tend to be social and active.

V. EXPERIMENT

We evaluated the binary classification accuracy of the
dementia scale. The goal of this experiment is to answer
the following questions: (1) can a model trained using turn-
taking features or activity features classify the dementia scale
with higher accuracy? (Section V-B) and (2) is fusing turn-
taking and indoor activity features effective in improving the
classification accuracy? (SectionV-C)

A. Experimental setting

In the experiment, we developed training and test datasets
by sampling: (1) Ssub sessions from total Si sessions that the
participant talked with robot and (2) location data of Dsub

days from the total Di days that the sensor data was obtained.
The sampling procedure of Ssub sessions is as follows: the
m th sample of a participant is composed as feature set:
x which is extracted using data from the 1 + (m − 1)st
session to the Ssub + (m− 1)st session. st is the step width

parameter, which controls the sampling interval, and we set
Ssub = Dsub = 7, st = 3 in this experiment. The data labeled
x is defined as the binary label data (high/low) of the HDSR of
the participant. The interaction and activity data were recorded
from 19 participants, respectively. When Ssub = Dsub = 7,
the interaction and activity dataset are composed of a total
239 and 130 samples, respectively. Leave-one-person cross
validation testing 5 is conducted to evaluate the performance.
We use the logistic regression classifier (LoReg), linear support
vector machine (L-SVM), and random forest classifier (RF) as
the classification models. We also use a gradient tree boosting
(XGBoost) optimized based on the XGBoost algorithm [24].
Because the sample size is small, we do not use a nonlinear
classifier such as a deep neural network, which requires many
training samples.

We normalize the data so that each feature has a zero
mean and one standard deviation. The parameters of the SVM
are optimized using a nested cross-validation scheme, with
C parameter values selected from [0.1,1,10]. The parameters
of the random forest are optimized similarly using a nested
cross-validation scheme, with the numbers of trees per forest
selected from [100, 200, 300]. The number of random samples
per tree is set as the square root of the training sample set.
The parameters of XGBoost are set to 2 for maximum depth
of the tree and to 0.3 for the learning rate eta, and the model
is optimized with L2 regularization. The balanced accuracy
(mean accuracy of both classes) is used as the evaluation
criteria for the classification because the numbers of samples
are unbalanced. The majority baseline when all samples are
classified into one majority class is set as 50%.

B. Classification with interaction behavior and daily activity

To discuss the effectiveness of the feature group, we trained
our models with three sets of features: (1) reaction time
features, (2) speaking length features, and (3) all interaction
features. Cases (1) - (3) included speaking time features. Table
III shows the classification results of these models. Columns 2-
4 denote the classification accuracy (balanced accuracy) based
on (1) the reaction time and (2) the speaking length. The
accuracies of all models based on the reaction time are better
than those for models based on the speaking length. The best
accuracy is 0.705, given using the random forest model.

Column 4 denotes the accuracies of all features. The best
accuracy is 0.598, obtained with the random forest model,
which was worse than the accuracy of the model based on the
reaction time alone by 0.11 points. This result indicates that
the speaking length feature did not contribute to improving
the accuracy of this task. Although turn-taking features can
be extracted more easily than can audio and visual features,
the results show that the reaction time effectively produced
classification accuracy concerning the score.

Column 5 in Table III shows the results obtained using
the activity features. The best accuracy is 0.664, which was
obtained with the linear SVM classifier. Although the accuracy

5Samples from each person are used for testing in each round.



TABLE III
BALANCED CLASSIFICATION ACCURACY OF MODELS WITH INTERACTION

FEATURES AND ACTIVITY FEATURES

Interaction features Activity
Reaction Time Speaking Length All Features

LoReg 0.503 0.500 0.499 0.632
L-SVM 0.660 0.396 0.572 0.664
RF 0.705 0.633 0.598 0.654
XGBoost 0.489 0.500 0.484 0.587
Mean 0.589 0.507 0.538 0.634

TABLE IV
BALANCED CLASSIFICATION ACCURACY OF FUSING INTERACTION AND

ACTIVITY FEATURES

(1) Interaction (2) Activity (3) Fusing
LoReg 0.500 0.750 0.875
L-SVM 0.500 0.750 0.625
RF 0.500 0.750 0.875
XGBoost 0.500 0.625 0.750
Mean 0.500 0.719 0.781

is lower than that obtained using the interaction features (the
highest accuracy is nearly 0.7), the classification performance
is stable because similar accuracies are obtained by all ma-
chine learning models, and the mean accuracy of 0.634 is
higher than that (0.507 - 0.589) of the models with interaction
features. The results show that the activity feature is also
effective for use in the classification of the score.

C. Fusing of interaction and location features

In this section, we analyze the effectiveness of fusing inter-
action features with activity features. Although the participants
who cooperated in providing interaction data are different from
those recording activity data, six participants agreed to record
both kinds of data. The samples from these six participants
are used as the test dataset for the fusion modeling. The
training and test data are sampled using the same sampling
method described in Section V-A with the same parameters
(Ssub = Dsub = 7, st = 3). The total samples of interaction
and activity data in the sets are 239, 130, and the test samples
total 52 and 45, respectively.

The unit of measurement (session and day) is different
between the interaction and activity data, so the classification
is conducted per participant. First, training and testing of the
model is performed per sample in the same manner described
in Section V. The output (score) of the models is summed
within the test samples from one participant for use in deciding
the label of the participant. In the fusing phase, the total
output (score) is summed for both the interaction and activity
model (called the latest fusing method), and it is decided
as the label with maximum output score. We evaluate the
balanced accuracy when data from the six participants is used
for testing in cross validation. Three models, (1) a model
containing all interaction features, (2) a model containing all
activity features, and (3) a late fusion model of (1) and (2),
are prepared to evaluate it. Table IV shows the classification
accuracy of the fusing of interaction features with activity
features. The best accuracy of 0.875 is obtained from the
fusion model using logistic regression and random forest. The

accuracies of three models except linear SVM are improved
by the fusion strategy, and the highest mean accuracy of 0.781
is found for the fusion model. From this result, the fusing of
interaction and activity features has the potential to improve
the model accuracy.

VI. DISCUSSION

The limitations of this research and future works are sum-
marized in this section. This study used the score of a cognitive
test (HDS-R) as labeled data for machine learning. Because
we did not use the diagnosis of dementia by professional staff,
it is not clarified whether the model and features are effective
in detecting dementia. The main focus of future work is to
analyze the proposed feature set relative to the diagnosis of
dementia. For the interaction data, turn-taking in quiz inter-
actions are used as the feature set. The participants’behavior
in small talk with the robot including the greeting is also an
important indicator in detecting dementia. The analysis of the
relationship between turn taking and the contents of the talk
with the robot, along with more effective turn-taking features
will be included in future works. For indoor activity data, we
used a simple method to detect the location of a participant. It
is hard to estimate the accurate position of a participant with
this simple method. Indoor positioning algorithms using the
RSSIs are surveyed in [25]. In general, we need to develop
large-scale reference point set to estimate accurate positions.
More precise location sensing will be included in other future
work. It is well known that memory problems affect daily
activity. For example, people with dementia often repeat the
same activity (going to the kitchen or toilet) over and over.
Therefore, developing a dementia-dependent activity detection
system such as repetitive activities is an important focus of
future work.

VII. CONCLUSION

This paper investigated the integration of two different
approaches to predict the score of a cognitive test for the
screening of dementia (Hasegawa revised scale) by capturing
(1) participants’ interaction behaviors with a humanoid robot
and (2) living activities in the residence using ubiquitous
sensors. In the experiments, we clarified the effectiveness
of the interaction feature set and indoor activity feature set
in the binary classification of the dementia scale. The best
classification accuracy was obtained with interaction feature
set, with a balanced accuracy of 0.70 and that obtained with the
indoor activity feature set was 0.66. The experimental results
also showed that fusing of the interaction and indoor activity
features contributes to improving the accuracy. Future work
will focus on analyzing the resulting diagnosis of dementia
and the proposed features.
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APPENDIX

Influence of the dataset size on the classification accuracy

We investigated how many data (session) samples are re-
quired to maintain classification performance by conducting
experiments with changing a and b values [Ssub = Dsub =
a, st = b] of Section V-A. Table V shows the dependency of
the accuracy on the number of sampling sessions with L-SVM,
RF, and LoReg. Rows 1-2, rows 3-4 and row 5 denote the
dependency on the samples of the interaction model, activity
model and fusion model, respectively. The accuracy of the
model with interaction features is higher than 0.62, except
[a = 10, b = 3] for the random forest, and a similar accuracy
is obtained regardless of the number of samples. From Table
V, almost the same accuracy is also obtained for the activity
and fusion models regardless of the number of samples.

TABLE V
DEPENDENCY OF THE ACCURACY ON THE AMOUNT OF SAMPLES

[S(D)sub, st] [5, 3] [5, 5] [7, 3] [7, 5] [10, 3] [10, 5]
Interaction L-SVM 0.660 0.753 0.660 0.611 0.636 0.728

RF 0.707 0.683 0.705 0.744 0.616 0.539
Activity L-SVM 0.669 0.648 0.635 0.637 0.618 0.644

RF 0.641 0.630 0.653 0.656 0.645 0.660
Fusing LoReg 0.875 0.625 0.875 0.875 0.875 0.875


